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Abstract

The electron storage ring at the LNLS light source at Brazil proposes the installa-
tion of a passive Landau cavity to alleviate its longitudinal coupled-bunch instabilities.
Here, we compute the required shunt impedance of the higher-harmonic cavity, discuss
the possible Robinson instability for the two-rf system, and estimate the fastest col-
lective instabilities that can be damped. Finally we investigate the adjustment of rf
voltage, synchronous phase, rf detuning, and other consequences in the event that the
bunch intensity changes.
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1 INTRODUCTION

The synchrotron light source electron ring at LNLS, Brazil suffers from longitudinal

coupled-bunch instabilities. A brief list of information of the ring is tabulated in Table I.

Landau damping of the instability can come from the spread in the synchrotron frequency.

When the synchronous angle φs 6= 0, the computation of synchrotron frequency spread is

tedious. A numerical computation is shown in Fig. 1 for various Γ = sinφs. These curves

can be represented approximately by the following expression:

∆ωs
ωs

=

(
π2

16

)(
1 + sin2 φs
1− sin2 φs

)
(hτ

L
f0)2 , (1.1)

where τ
L

is the total length of the bunch and φs is the synchronous angle. The expression is

valid for small-amplitude oscillation. The mth azimuthal mode will be stable if [1]

1

τ
.

√
m

4
∆ωs , (1.2)

where 1/τ is the growth rate ignoring Landau damping. Notice that a large synchronous

angle enhances the synchrotron frequency spread by the factor

F =
1 + sin2 φs

1− sin2 φs
. (1.3)

Table I: Some information of the synchrotron light source elec-

tron ring at LNLS, Brazil, with a single rf system.

Circumference 93.21204 m

Total energy E0 1.37 GeV

Revolution frequency f0 = ω0/(2π) 3216 kHz

Rf harmonic h 148

Rf voltage Vrf 350 kV

Momentum compaction α 0.0083

Synchrotron frequency fs 22.10 kHz

Natural energy spread ∆E/E0 5.89× 10−4

Natural bunch length στ 30.0 ps

Damping times: τx 13.2 ms

τy 12.6 ms

τs 6.2 ms

Synchronous phase angle π−φs 19.0 degrees
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Figure 1: Synchrotron frequency spread S as a function of single-bucket bunching
factor B ≈ τLf0 for various values of Γ = sinφs. τL is full bunch length, f0 is revolu-
tion frequency, φs is synchronous angle, and ωs0 is unperturbed angular synchrotron
frequency.

The synchronous phase angle of φs = π−19.0◦ at the LNLS ring contributes an enhancement

factor of 1.24. Using the natural full bunch length of τ
L

= 2
√

6στ where στ = 30.0 ps at

Vrf = 350 kV, the angular synchrotron frequency spread is ∆ωs = 694 Hz. This spread is able

to damp an instability in the dipole azimuthal mode that has a growth rate of τ−1 < 173 s−1

or a growth time τ > 5.77 ms, which is roughly the same as the longitudinal damping time.

In other words, the damping due to the spread of the synchrotron frequency is no better than

the damping from the synchrotron radiation. Presumably, the longitudinal coupled-bunch

instability at LNLS is much faster.

2 HIGHER-HARMONIC CAVITY

In order to Landau damp longitudinal coupled-bunch instability, a large spread in syn-

chrotron frequency inside the bunch is required. One way to do this is to install a higher-

harmonic cavity, sometime known as Landau cavity [2]. For example, the higher-harmonic

cavity has resonant frequency mωrf , where ωrf is the resonant angular frequency of the fun-
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damental rf cavity. The total rf voltage seen by the beam particles becomes

V (τ ) = Vrf [sin(φs − ωrfτ )− r sin(φm −mωrfτ )]− Us
e
, (2.4)

where the modified synchronous phase angle φs is to compensate for the Us, the radiation

energy loss or any required acceleration. We would like the bottom of the potential well,

which is the integral of V (τ ), to be as flat as possible. The rf voltage seen by the synchronous

particle is compensated to zero by the energy lost to synchrotron radiation. In addition, we

further require
∂V

∂τ

∣∣∣∣
τ=0

= 0 , and
∂2V

∂τ 2

∣∣∣∣
τ=0

= 0 , (2.5)

so that the potential will become quartic instead. We therefore have 3 equations in 3 un-

knowns:

sinφs = r sinφm +
Vs
Vrf

, (2.6)

cosφs = rm cosφm , (2.7)

sinφs = rm2 sinφm , (2.8)

where we have introduced, for convenience, the radiation voltage drop Vs = Us/e. Eliminat-

ing φm from Eqs. (2.6) and (2.8), φs is obtained:

sinφs=
m2

m2−1

Vs
Vrf

. (2.9)

From Eqs. (2.7) and (2.8), φm is solved:

tan φm=

m

m2−1

Vs
Vrf√

1−
(

m2

m2−1

Vs
Vrf

)2
. (2.10)

Finally from Eq. (2.7), we obtain the voltage ratio

r=

√
1

m2
− 1

m2−1

V 2
s

V 2
rf

. (2.11)

For small amplitude oscillation, the potential becomes

−
∫
V (τ )d(ωrfτ ) −→ m2−1

24
(ωrfτ )4Vrf cosφs , (2.12)
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which is quartic and the small-amplitude synchrotron frequency is (see Appendix)

ωs(τ )

ωs0
=
π

2
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m2−1

6

)1/2
ωrfτ

K(1/
√

2)
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(
m2

m2−1

Vs
Vrf

)2

1−
(
Vs
Vrf

)2


1/4

, (2.13)

where the last factor equals
√

cosφs/ cosφs0 and can usually be neglected; its deviates

from unity by only ∼ 1
2
[Vs/(mVrf)]2 if the synchronous angle is small. In above, ωs0 is the

synchrotron frequency at zero amplitude when the higher-harmonic cavity voltage is turned

off, and K(1/
√

2) = 1.854 is the complete elliptic integral of the first kind which is defined

as

K(t) =

∫ π/2

0

dθ√
1− t2 sin2 θ

. (2.14)

We see that the synchrotron frequency is zero at zero amplitude and increases linearly with

amplitude. This large spread in synchrotron frequency may be able to supply ample Landau

damping to cure the longitudinal coupled-bunch instability.

In the situation where there is no radiation loss and no acceleration, Us = 0, the solution

of Eqs. (2.9) to (2.11) simplifies, giving φs = φm = 0 and the ratio of the voltages of higher-

harmonic cavity to the fundamental r = 1/m. Of course, it is also possible to have r 6= 1/m.

Then the synchrotron frequency at the zero amplitude will not be zero, but the spread in

synchrotron frequency can still be appreciable. When m = 2, i.e., having a second harmonic

cavity, the mathematics simplifies. The synchrotron frequencies for various values of r are

plotted in Fig. 2. Here, r = 0 implies having only the fundamental rf while r = 1
2

the situation

of having the synchrotron frequency linear in amplitude for small amplitudes. In between,

the synchrotron frequency spread decreases as r decreases. Notice that for 0.3 <∼ r < 0.5,

the synchrotron frequency has a maximum near the rf phase of ∼ 110◦. Particles near there

will have no Landau damping at all and experience instability. Thus the size of the bunch

is limited when a double cavity is used. Also the size of the bunch cannot be too small

because of two reasons. First, the average synchrotron frequency may have been too low.

Second, the central region of the phase space is a sea of chaos, implying that a bunch of

small longitudinal area will be blown up to the first well-behaved torus. [3].

A Landau cavity increases the spread in synchrotron frequency, therefore it is ideal in

damping mode-mixing instability and coupled-bunch instability. However, it may be not

helpful for the Keil-Schnell type longitudinal microwave instability [4]. This method was
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Figure 2: The normalized synchrotron tune of a double rf system as a function of
the peak rf phase φ for various voltage ratio r. Here, the higher-harmonic cavity
has frequency twice that of the fundamental. When r > 1

2 , the center of the bucket
becomes an unstable fixed point and two stable fixed points emerge [3].

first applied successfully with a third harmonic cavity to increase Landau damping at the

Cambridge Electron Accelerator (CEA) [5]. It was later applied at the ISR with a 6th

harmonic cavity to cure mode-mixing instability [6]. Recently, a third-harmonic cavity has

been reported in the SOLEIL ring in France to give a relative frequency spread of about

200%. However, since the center frequency has been dramatically decreased (not exactly to

zero), the net result is a poor improvement in the stabilization. The gain in the stability

threshold has been only 30% [7].

Actually, with a higher-harmonic cavity, the bunch becomes more rectangular-like in the

longitudinal phase space, or particles are not so concentrated at the center of the bunch.

Assuming the bunch area to be the same, the Boussard-modified Keil-Schnell threshold is

proportional to the energy spread [4, 10]. Since the bunch becomes more flattened, the

maximum energy spread which is at the center of the bunch is actually reduced, and so will

be the instability threshold. However, spreading out the particles longitudinally does help

to increase the bunching factor and decrease the incoherent self-field or space-charge tune

shift. At the Proton Synchrotron Booster at CERN, a rf system with higher harmonics 5

to 10 has raised the beam intensity by about 25 to 30% [8]. For the Cooler Ring at the

Indiana University Cyclotron Facility, a double cavity has been able to quadruple the beam

intensity [3].
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3 PASSIVE LANDAU CAVITY

Higher-harmonic cavities are useful in producing a large spread in synchrotron frequency

so that single-bunch mode-mixing instability and coupled-bunch instability can be damped.

However, the power source to drive this higher-harmonic rf system can be rather costly. One

way to overcome this is to do away with the power source and let the higher-harmonic cavity

be driven by the beam-loading voltage of the circulating beam.

For a cavity with a high quality factor, the beam loading voltage is just the ib, the current

component of a bunch per bunch separation at the cavity resonant frequency, multiplied by

the impedance of the cavity. Thus, for a Gaussian bunch,

ib = 2I0e
−1

2
(mhω0στ )

2
, (3.1)

where στ is the rms bunch length and ω0/(2π) is the revolution harmonic. Here, m is the

ratio of the resonant frequencies of the higher-harmonic cavity to the fundamental rf cavity

and h is the fundamental rf harmonic. For a short bunch, ib ≈ 2I0 with I0 being the average

current of the bunch per bunch separation or the total average current of all the bunches in

the ring. Applying to the proposed LNLS higher-harmonic cavity with m = 3, this is true

for a bunch of στ = 30 ps to within 3.5%.

The higher-harmonic cavity must have suitable shunt impedance Rs and quality factor

Q, and this can be accomplished by installing necessary resistor across the cavity gap. Thus,

Rs and Q can be referred to as the loaded quantities of the cavity. For a particle arriving at

time τ ahead of the synchronous particle, it sees the total voltage

V (τ ) = Vrf sin(φs − ωrfτ )− ibRsRe
[

1

1 + i2Qδ
eimωrfτ

]
− Us

e
, (3.2)

where ωrf = hω0 is the angular rf frequency determined by the resonator in the rf klystron

that drives the fundamental rf cavity and the negative sign in front of ib indicates that this

beam loading voltage is induced by the image current and opposes the beam current. In

above,

δ =
1

2

(
ωr
mωrf

− mωrf

ωr

)
≈ ωr −mωrf

ωr
(3.3)

represents the deviation of the resonant angular frequency ωr of the higher-harmonic cavity

from the mth multiple of the rf angular frequency. Of course, this is related to the detuning

angle ψ of the higher-harmonic cavity, which we introduce in the usual way as

tanψ = 2Qδ . (3.4)
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Now, Eq. (3.2) can be rewritten as

V (τ ) = Vrf sin(φs − ωrfτ )− ibRs cosψ cos(ψ −mωrfτ )− Vs . (3.5)

Again to acquire the largest spread in synchrotron frequency, we require

V (0) = 0 , V ′(0) = 0 , V
′′
(0) = 0 , (3.6)

so that the potential for small amplitudes becomes quartic,

U(τ ) = −
∫
V (τ )dτ = −τ

4

4!
V
′′′

(0) . (3.7)

Since we are having exactly the same quartic potential as in an rf system with an active

Landau cavity, we expect the synchrotron frequency to be exactly the same as the expression

given by Eq. (2.13) when the oscillation amplitude is small.

The set of requirements, however, are different from that of the active Landau cavity

system. Here, the requirements are

Vrf sinφs = ibRs cos2 ψ + Vs , (3.8)

Vrf cosφs = −mibRs cosψ sinψ , (3.9)

Vrf sinφs = m2ibRs cos2 ψ . (3.10)

For an electron machine which is mostly above transition, the synchronous angle φs is be-

tween 1
2
π and π. Thus, from Eq. (3.9), we immediately obtain

sin 2ψ > 0 =⇒ 0 < ψ <
π

2
, (3.11)

and from Eqs. (3.3) and (3.4), ωr > mωrf . This means that the beam in the higher-harmonic

cavity is Robinson unstable [9], as is illustrated in Fig. 3. Of course, the fundamental rf

cavity should be Robinson stable, and it will be nice if the detuning is so chosen that the

beam remains stable after traversing both cavities.

4 APPLICATION TO LNLS

The synchrotron light source electron ring at LNLS, Brazil would like to install a passive

Landau cavity with m = 3 in order to alleviate the longitudinal coupled-bunch instabilities.
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Figure 3: For the higher-harmonic cavity, the resonant frequency ωr is above the
mth multiple of the rf frequency. The beam will be Robinson unstable above tran-
sition. For the fundamental cavity, the angular resonant frequency ωr0 is below
the angular rf frequency ωrf = hω0, and the beam will be Robinson stable. The
detuning of the fundamental rf should be so chosen that the beam will be stable
after traversing both cavities.

The fundamental rf system has harmonic h = 148 or rf frequency frf = ωrf/(2π) = 476.0 MHz

with a tuning range of ±10 kHz, and rf voltage Vrf = 350 kV. To overcome the radiation

loss, the synchronous phase is set at φs0 = 180◦ − 19.0◦. This gives a synchrotron tune at

small amplitudes νs = 6.87× 10−3 or a synchrotron frequency fs = 22.1 kHz.

With the installation of the passive Landau cavity, the synchronous phase must be

modified to a new φs, which is obtained by solving Eqs. (3.8) and (3.10):

sinφs =

(
m2

m2−1

)(
Vs
Vrf

)
=

m2

m2−1
sin φs0 . (4.1)

Thus,

φs0 = 180◦ − 19.0◦ =⇒ φs = 180◦ − 21.49◦ , (4.2)

where m = 3 has been used. The detuning ψ of the higher-harmonic cavity can be obtained
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from Eqs. (3.9) and (3.10), or

tanψ = −m cotφs =⇒ ψ = 82.53◦ . (4.3)

Finally from Eq. (3.10),

ibRs =
Vrf sinφs
m2 cos2 ψ

. (4.4)

With ib = 2I0 = 0.300 A and Vrf = 350 kV, we obtain the shunt impedance of the higher-

harmonic cavity to be Rs = 2.81 MΩ. The power taken out from the beam is

P =
1

2

i2bRs

1 + tan2 ψ
= 2.14 kW , (4.5)

which is not large when compared with the power loss due to radiation

Prad = NUsf0 = I0Vrf sinφs0 = 17.09 kW , (4.6)

where N is the total number of electrons in the ring. The higher-harmonic cavity has a

quality factor of Q = 45000 and a resonant frequency fr ∼ 3fr0 = 1428 MHz. From the

detuning, it can easily found that the frequency offset is fr − 3frf = 121 kHz.

Now let us compute the growth rate for one bunch at the coherent frequency Ω. For one

particle of time advance τ , we have from Sacherer integral equation for a short bunch [1, 11],

Ω2 − ωs(τ )2 =
iηeI0

E0T0

∑
q

(qω0 + Ω)Z‖0 (qω0 + Ω) , (4.7)

where η is the slip factor and we have retained the dependency of the synchrotron frequency

ωs on τ because of its large spread in the presence of the higher-harmonic cavity. From

Eq. (2.13), this dependency is

ωs(τ )

ωs0
=
π

2

(
m2−1

6

)1/2
ωrfτ

K(1/
√

2)

√
cosφs
cosφs0

, (4.8)

where the last factor amounts to 0.9920 and can therefore be safely abandoned. Thus, the

average ω2
s over the whole bunch just gives the square of the rms frequency spread,

〈ω2
s〉 = σ2

ωs =

[
πωs0

2

√
m2−1

6

ωrfστ

K(1/
√

2)

]2

. (4.9)

The FWHM natural bunch length at Vrf = 350 kV is 70.6 ps; thus στ = 30.0 ps. This gives

σωs = 12.2 kHz.
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Since the synchrotron frequency is now a function of the offset from the stable fixed

point of the rf bucket, a dispersion relation can be obtained from Eq. (4.7) by integrating

over the synchrotron frequency distribution of the bunch. Here, we are interested in the

growth rate without damping, which is given approximately by

1

τ
= ImΩ ≈ ηeI0ωrf

2E0T0ω̄s

{[
ReZ‖0(ωrf + ω̄s)−ReZ‖0(ωrf − ω̄s)

]
+m

[
ReZ‖0 (mωrf + ω̄s)−ReZ‖0 (mωrf − ω̄s)

]}
, (4.10)

where the mean angular synchrotron frequency can be computed from Eq. (4.8) to be

ω̄s =

√
2

π
σωs . (4.11)

This can be computed easily by substituting into the expression for ReZ. However, the

differences in Eq. (4.10) can also be approximated by derivatives. For the higher-harmonic

cavity, both the upper and lower synchrotron side-bands lie on the same side of the higher-

harmonic resonance as indicated in Fig. 3. Also their difference, 4σω/(2π) = 7.76 kHz is

very much less than the cavity detuning (ωr −mωrf)/(2π) = 121 kHz. Recalling that

ReZ(ω) = Rs cos2 ψ , (4.12)

where the detuning ψ is given by Eq. (3.4), the second term can be written as a differential,

ReZ‖0 (mωrf + ω̄s)−ReZ‖0(mωrf − ω̄s) ≈
[
Rs cos2 ψ sin 2ψ

2Q

ωr

]
2ω̄s . (4.13)

For the fundamental cavity, the detuning is usually ∆ = −10 kHz at injection and

is reduced to ∆ = −2 kHz in storage mode when the highest electron energy is reached.

Thus, the upper and lower synchrotron side-bands lie on either side of the resonance peak

as illustrated in Fig. 3. Since |∆| � σωs and the resonant peak is symmetric about ωr0, we

can also write the first term of Eq. (4.10) as a differential about ω̄s. Thus,

ReZ‖0 (ωrf + ω̄s)−ReZ‖0 (ωrf − ω̄s)

= ReZ‖0(ωr0+∆+ω̄s)−ReZ‖0 (ωr0−∆+ω̄s) ≈
[
Rs cos2 ψωs sin 2ψωs

2Q

ωr0

]
2∆ , (4.14)

where ωr0/(2π) = 476.00 MHz is the resonant frequency of the fundamental cavity and ψωs,

which is similar to a detuning angle, is defined as

tanψωs = 2Q
ω̄s
ωr0

. (4.15)
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We arrive at

1

τ
=

2ηeI0Q

E0T0

[
2∆

ω̄s
Rs cos2 ψωs sin 2ψωs

∣∣
fundamental

+ Rs cos2 ψ sin 2ψ
∣∣
higher harmonic

]
. (4.16)

The square bracketed factor in Eq. (4.16) becomes[
2∆

ω̄s
Rs cos2ψωs sin 2ψωs

∣∣
fundamental

+Rs cos2ψ sin 2ψ
∣∣
higher harmonic

]
= (−0.1513+ 0.0122) MΩ ,

(4.17)

where we have used for the fundamental cavity, the shunt impedance Rs = 3.84 MΩ, and

quality factor Q = 45000. The damping rate is 36600 s−1 or a damping time of 0.022 ms,

and the two-rf system turns out to be Robinson stable. However, it is important to point

out that the growth rate formula given by Eq. (4.10) is valid only if the shift and spread

of the synchrotron frequency are much less than some unperturbed synchrotron frequency.

Here, the synchrotron frequency is linear with the offset from the stable fixed point of the

longitudinal phase space and the spread is therefore very large. Thus, Eq. (4.10) can only

be viewed as an estimate. The employment of a mean synchrotron angular frequency ω̄s can

also be questionable. Note that the assumption of the mean synchrotron angular frequency

in Eq. (4.11) is not sensitive to the higher-harmonic-cavity term in Eq. (4.10) but is rather

sensitive to the fundamental-cavity term. For example, if we use ω̄s = 1.5σωs instead, the

damping time increases to 0.751 ms, while ω̄s = 2.0σωs makes the system Robinson unstable

with a growth time of 0.596 ms. With this uncertainty, it may be better to increase the

detuning ∆ of the fundamental to at least ∆ ∼ −4 KHz so that it becomes more certain that

the two-rf system will be Robinson stable. Otherwise, the purpose of the higher-harmonic

cavity can be defeated, because some or most of the spread of the synchrotron frequency

obtained will be used to fight the Robinson instability created instead of other longitudinal

collective instabilities of concern.

Now let us estimate how large a Landau damping we obtain from the passive Landau

cavity coming from the spread of the synchrotron frequency. Following Eq. (1.2), the stability

criterion is roughly
1

τ
<∼
ωs(
√

6στ)

4
, (4.18)

where the synchrotron angular frequency spread is given by Eq. (2.13). The spread in

synchrotron angular frequency has been found to be ωs(
√

6στ) = 39.6 kHz. In other words,

the higher-harmonic cavity is able to damp an instability that has a growth time longer

than 0.101 ms, an improvement of 57 fold better than when the higher-harmonic cavity is
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absent. Thus, theoretically, this Landau damping is large enough to alleviate the Robinson

antidamping of higher-harmonic cavity.

5 THE SHUNT IMPEDANCE

We notice that the required shunt impedance of the passive Landau cavityRs = 2.81 MΩ

is large, although it is still smaller than the shunt impedance of 3.84 MΩ of the fundamental

cavity. It is easy to understand why such large impedance is required. The synchronous

angle for a storage ring without the Landau cavity is usually just not too much from 180◦,

here φs0 = 180◦ − 19.0◦, because of the compensation of a small amount of radiation loss.

The rf gap voltage phasor is therefore almost perpendicular to the beam current phasor. In

order that the beam-loading voltage contributes significantly to the rf voltage, the detuning

angle of the passive higher-harmonic cavity must therefore be large also, here ψ = 82.53◦.

In fact, without radiation loss to compensate, the beam-loading voltage phasor would have

been exactly perpendicular to the beam current phasor. Since cosψ = 0.130 is small, the

shunt impedance of the higher-harmonic cavity must therefore be large. In some sense, the

employment of the higher-harmonic cavity is not efficient at all, because we are using only

the tail of a large resonance impedance, as is depicted in Fig. 3. This is not a waste at

all, however, because we can do away with the generating source for this cavity. Also, the

large detuning angle implies not much power will be taken out from the beam as it loads

the cavity, only 2.14 kW here. On the other hand, the detuning of the fundamental cavity

need not be too large. This is because the rf gap voltage is supplied mostly by the generator

voltage and only partially by the beam loading in the cavity.

The most important question here is how do we generate a large shunt impedance for the

higher-harmonic cavity. Usually it is easy to lower the shunt impedance by adding a resistor

across the cavity gap. Some other means will be required to raise the shunt impedance, in

case it is not large enough. One way is to coat the interior of the higher-harmonic cavity

with a layer of medium that has a higher conductivity. However, it is hard to think of any

medium that has a conductivity very much higher than the copper surface of the cavity.

For example, the conductivity of silver is only slightly higher. Another way to increase the

conductivity significantly is the reduction of temperature to the cryogenic region. Notice

that Rs/Q is a geometric property of the cavity. Raising Rs will raise Q also. However, a

higher quality factor is of no concern here, because the requirements in Eqs. (3.8), (3.9), and

(3.10) depend on the detuning ψ only and are independent of Q. With the same detuning ψ,
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a higher Q just implies a smaller frequency detuning, or a smaller frequency offset between

the resonant angular frequency ωr of the higher-harmonic cavity and the mth multiple of

the rf angular frequency.

Another way to achieve a lower shunt impedance requirement is to reduce the rf voltage.

We can rewrite Eq. (4.4) as

ibRs

Vs
=

(
m2 − 1

m2

)(
Vrf

Vs

)2

− 1 , (5.1)

after eliminating φs and ψ with the aid of Eqs. (4.1) and (4.3). Thus, for a given beam

current, lowering Vrf will result in a smaller shunt impedance. Notice that the right side is

quadratic in Vrf , a higher Vrf will increase the required shunt impedance by very much. For

example, with the same radiation loss, increasing Vrf from 350 kV to 500 kV will increase

the required shunt impedance of the higher-order cavity from 2.81 to 6.12 MΩ. However,

lowering Vrf by too much is usually not favored because the electron bunches will become

too long.

In order to maximize Landau damping, criteria must be met so that the rf potential

becomes quartic. As is shown in Fig. 2 for a m = 2 double rf system, when the rf voltage

ratio deviates from r = 1/m = 0.5 by 20% to 0.4, the spread in synchrotron frequency for a

small bunch decreases tremendously to almost the same tiny value as in the single rf system.

There is a big difference between an active Landau cavity and a passive Landau cavity. In an

active Landau cavity, the criteria of Eqs. (2.6), (2.7), and (2.8) are independent of the beam

intensity. On the other hand, the criteria for the operation of a passive cavity, Eqs. (3.8),

(3.9), and (3.10), depend on the bunch intensity. What will happen when the bunch intensity

changes significantly? Let us recall how we arrive at the solution of the 3 equations of the

passive two-rf system. The new synchronous phase φs, as given by Eq. (4.1), is determined

solely by the ratio of the radiation loss Us to the rf voltage Vrf . while the detuning ψ is

just given by −m cotφs. The only parameter that depends on the beam current is the shunt

impedance Rs. Thus, the easiest solution is to install a variable resistor across the the gap

of the higher-harmonic cavity and adjust the proper shunt impedance by monitoring the

intensity of the electron bunches.

In the event that the shunt impedance is not adjustable, one can adjust instead the rf

voltage so that Eq. (5.1) remains satisfied with the new current but with the preset Rs. With

the new rf voltage, the synchronous phase φs has to be adjusted so that Eq. (4.1) remains

satisfied. This will alter the detuning ψ according to Eq. (4.3). The only way to achieve the
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new detuning is to vary the rf frequency. This will push the beam radially inward or outward.

As the beam current changes by ∆I0/I0, to maintain the criteria of the quartic rf potential,

the required changes in rf voltage, synchronous angle, and detuning of the higher-harmonic

cavity are, respectively,

∆Vrf

Vs
=

1

2

[
m2

m2−1

Vs
Vrf

][
m2−1

m2

V 2
rf

V 2
s

− 1

]
∆I0

I0
, (5.2)

∆(π − φs) = −
[(

m2−1

m2

Vrf

Vs

)2

− 1

]−1/2
∆Vrf

Vs
, (5.3)

∆ψ =
1

2m

[(
m2−1

m2

Vrf

Vs

)2

− 1

]−1/2
∆I0

I0

, (5.4)

where Us = eVs is the energy loss per turn due to synchrotron radiation. The change of the

detuning angle ψ leads to a fractional change in the rf frequency and therefore a fractional

change in orbit radius

∆R

R
= −m

2−1

4mQ

[
m2−1

m2

V 2
rf

V 2
s

− 1

] [(
m2−1

m2

Vrf

Vs

)2

− 1

]−1/2
∆I0

I0
, (5.5)

where R is the radius of the storage ring. These changes are plotted in Fig. 4 for the LNLS

double rf system when he beam current varies by ±20%. Because of the high quality factors

Q of the cavities, the radial offset of the beam turns out to be very small, less than ±0.14 mm

for a ±20% variation of beam current.
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Figure 4: Plots showing the required variations of rf voltage Vrf , synchronous angle
φs, higher-harmonic-cavity detuning ψ, and beam radial offset ∆r to maintain the
criteria of the quartic rf potential, when the beam current varies by ±20%.
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APPENDIX

The easiest way to derive the synchrotron frequency is to use action-angle variables.

With the action defined as

J =
1

2π

∮
∆E dτ , (A.1)

the synchrotron angular frequency is given by

ωs =
∂H

∂J
, (A.2)

where H is the Hamiltonian of the system. Here, we have used as canonical variables τ ,

the arrival time ahead of the synchronous particle, and ∆E, the energy offset. The use of a

Hamiltonian is justified for a time interval much less than the radiation damping time.

However, it is also easy to arrive at the same result without resorting to action-angle

variables. The phase equation of a beam particle in the longitudinal phase space is

dτ

dt
= − η

β2E0
∆E , (A.3)

where β is the velocity of the particle with respect to the velocity of light. The negative sign

on the right side comes about because a particle with ∆E > 0 will arrive late after one turn

when it is above transition (η > 0). The energy equation is

d∆E

dt
=

1

T0

[eV (τ )− Us] , (A.4)

where V (τ ) is the rf voltage seen by the particle of time advance τ . In a two-rf system

satisfying the requirements in Eq. (2.5),

V (τ ) =
1

3!
V ′′′(0)τ 3 = −m

2−1

3!
(ωrfτ )3Vrf cosφs , (A.5)

where φs is the modified synchronous angle in the presence of the higher-harmonic cavity.

The Hamiltonian is given by

H = − η

2β2E
(∆E)2 +

m2−1

4!

(ωrfτ )4

2πh
eVrf cosφs . (A.6)

For a particle having maximum arrival excursion τ̂ , the Hamiltonian assumes the value

H =
m2−1

4!

(ωrf τ̂ )4

2πh
eVrf cosφs . (A.7)
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We can therefore solve from Eq, (A.6) the energy offset

∆E = ±

√
−2β2E0

η

m2−1

4!

ω4
rf

2πh
eVrf cosφs

√
τ̂ 4 − τ 4 . (A.8)

We now make use of the phase equation of Eq. (A.3) and integrate over one synchrotron

period,
2π

ωs(τ̂)
=

∮
dt =

∮
−β

2E0

η∆E
dτ . (A.9)

A comment on the sign of the integrand is in order. Above transition (η > 0) when ∆E > 0,

the particle arrival time slips backward, or the integration over τ ranges from +τ̂ to −τ̂ . If

we integrate from −τ̂ to +τ̂ instead, the negative sign will be eliminated and the integrand

becomes positive. On the other half of the synchrotron oscillation when ∆E < 0 so that the

negative sign is cancelled, the particle arrival time slips forward from −τ̂ to +τ̂ . Similarly,

below transition (η < 0), when ∆E > 0, the particle arrival time slips forward from −τ̂ to

+τ̂ , the integrand is again positive. When ∆E < 0, the arrival time slips backward from +τ̂

to −τ̂ . Reversing the order of integration, the integrand is again positive. Substituting ∆E

from Eq. (A.8) into Eq. (A.9), we obtain

2π

ωs(τ̂ )
=

2

τ̂

√
− 2β2E0

ηeV rf cosφs

4!

m2−1

2πh

ω4
rf

I , (A.10)

where the integral

I =

∫ 1

0

du√
1− u4

=
K(1/

√
2)√

2
. (A.11)

Finally, we make use of the expression for the small-amplitude synchrotron angular frequency

ωs0 in the absence of the higher-harmonic cavity,

ωs0 =

√
−ηheVrf cosφs0

2πβ2E0

ω0 , (A.12)

to arrive at

ωs(τ̂)

ωs0
=
m2−1

4!

πωrf τ̂

K(1/
√

2)

√
cosφs
cosφs0

. (A.13)

Substitution of Eq. (2.9) gives the expression in Eq. (2.13).
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